\latex{ 18-8a = 2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;/ -18 }
right side: \latex{ 3 \times 2 + 2 + 2 = 6 + 2 + 2 = 10 }.
b) \latex{ \frac{y}{2}+\frac{4}{5} =1.2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; / -\frac{4}{5} }
\latex{ \frac{y}{2} =1.2-0.8 }
\latex{ \frac{y}{2} =0.4 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; / \times 2 }
\latex{ \frac{y}{2} =0.8 } rational number
Check: \latex{ \frac{0.8}{2}+\frac{4}{5}=0.4+0.8=1.2 }.
Answer: The solution is \latex{ y=0.8 }.
Determine the value
of the variable
Is the solution an
element of the universal set?
\latex{ 3x = 33 \;\;\;\;\;\;\;\;\;\;\;\;/ \div 3 }
Ben's result is \latex{ 12 } greater than Aaron's; therefore, if you add \latex{ 12 } to Aaron's result, the two numbers will be equal.
Remove the parentheses.
\latex{ / - a }
\latex{ / + b }
\latex{ / + c }
\latex{ / \div 2 }
Answer: The number is \latex{\frac{6}{65}}.
\latex{ - \frac{3}{4} = \frac{1}{4}+ \frac{x}{2} - \frac{x}{3}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; /- \frac{1}{4}}
\latex{ - \frac{3}{4} - \frac{1}{4} = \frac{x}{2} - \frac{x}{3} }
\latex{ - \frac4{}{4} = \frac{3x-2x}{6} }
\latex{ - 1 = \frac{x}{6}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; /\times 6 }
\latex{ - 6 = x } whole number
b)
For example, in uniform linear motion, speed is the quotient of distance and time: \latex{ v=\frac{s}{t} }.
\latex{ (\lt; \leq; \gt; \geq; \neq ) }.
\latex{ 3x \lt 18} \latex{ /\div3 }
\latex{ x \lt 6}
b) \latex{ 7- 2x \leq 11 } \latex{ /-7 }
\latex{ - 2x \leq 4} \latex{ /\div(-2) }
\latex{ x \geq -2}
Solving the inequality: x is a rational number and \latex{ x=\gt 2 }.The solutions to the inequality are rational numbers coloured in red on the number line.

- \latex{ 5x - 7 = 18 }
- \latex{ 3 = 7 - 2x }
- \latex{4 - 3x = x + 16}
- \latex{ 11 - 4x = 11 + 3x }
- \latex{ 8x + 41 = 11x + 16 }
- \latex{ x + 1 + 2x+ 2 + 3x+ 3 = 4x + 4 }
- \latex{ 3x + 7 - 4x + 9 = 5x + 13 - 8x - 1 }
- \latex{ \frac{x}{5} +2 = 12-x }
- \latex{ 2x + \frac{5}{3} = \frac{x}{6} }
- \latex{ \frac{x}{4} + \frac{3}{5} = \frac{5x}{20} +1}
- \latex{ \frac{x}{4} - 1 = \frac{37}{5}-5x}
- \latex{ \frac {3}{2}x + 3 = 5x+1-x}
- \latex{ 2(x + 2) - 1 = 4}
- \latex{ 4x + 2(x + 3) = 6 }
- \latex{ 3(x - 3) + 4(x + 1) = 2(x + 9) }
- \latex{ 5 - 2(x + 4) = x + 6 }
- \latex{ 5(x + 4) - 3(x - 2) = 20 }
- \latex{ 2- \frac{x+2}{6} =1 }
- \latex{ \frac{x+1}{3} + \frac{x-1}{2} =x-1 }
- \latex{ \frac{x}{3} + \frac{x-2}{4} - \frac{x+2}{5} = \frac{x}{6} +3 }
- \latex{ 3x - 1 \lt 8 }
- \latex{ 2x - 5 \leq x + 4 }
- \latex{ 14 - 2x \gt x - 11 }
- \latex{ 5 - 3x \geq 5 }
- \latex{ 6x + 6 - 4x \lt 8x - 18 }
- \latex{ 3(x - 1) + 4x \gt 3(2x - 5) }
- \latex{ 6x-7 \geq 5}
- \latex{ 3 + 3x \lt x + 17 }
- \latex{ 18 - 6x \geq 5x + 7 }
- \latex{ 2(3 - x) + 5(x - 1) \leq x + 8 }
- \latex{ \frac{x}{3} -4 \lt \frac{x}{6} }
- \latex{ \frac{2-3x}{5} + \frac{x-1}{3} +1 \gt 0 }
- \latex{ p=\frac{m}{v} }
- \latex{ p=\frac{F_{ny}}{A} }
- \latex{ W= F \times s}
- \latex{ Q = c \times m \times t}
